Finishing HM criterion example:
Char wit. TCSL_{3}, standard max torus

IDS $\leadsto \rightarrow$ odirection
$\operatorname{limit}_{p:}^{\prime}=\lim _{t \rightarrow 0} x(t) p$

$$
\left.w t_{\lambda}\left(\theta^{p}()_{p}\right)_{p}\right)
$$

$$
=-\left\langle\lambda, x_{\text {min }}\right\rangle
$$

Point $p \in \mathbb{P}\left(\right.$ sym $\left.^{3} \mathbb{C}^{3}\right)$ is:
i) T-semistadle iff $S t(p) \subset t_{\mathbb{P}}$ contains origin
ii) G-semistable ff gop is T-semistable for all $g \in G$ (because of $H M$ criterion)
More is true: based on a norm $|x|$ on 2PS (1.1 should be W-invariant), $N=$ Char of T

Given $S t(p) \subset N_{\mathbb{R}}, \exists!\lambda$ which minimizes

$$
V(p, \lambda)=\frac{1}{|\lambda|} w t\left(\theta(1)_{p_{0}}\right)=-\left\langle\frac{1}{|\lambda|} \lambda, \chi_{\uparrow} \text { min }\right\rangle
$$

lowest λ-wt appearing in St (p)
This is because $\nu(p, \lambda)=\max _{x \in S t(p)}\left\langle-\frac{\lambda}{|\lambda|}, x\right\rangle$

This is convex upward in λ :

$\operatorname{minimize} \max _{\chi \in S t(p)}\left\langle\frac{-\lambda}{|\lambda|} x\right\rangle$ over rational polyhedral cone dual to cone spanned by St(p).

Lem: $\exists!$ closest point $X \in S t(p)$ to origin, and $\nu(p, \lambda)$ is minimized by λ dual to this x

Pf: homework
Not only is this true for T but there is a unique test datum (x, λ) up to equivalence maximizing $\nu(x, \lambda)$ over τ (recall maps overt $\mathbb{A} / G_{m} \rightarrow x / \sigma$
Thu: X projective-over-affine, G reductive, \mathcal{L} is NEF class in $N S_{G}(X)$, then

1) $\forall p \in X^{u s}, \mathcal{F !} \operatorname{map} f: A / G_{m} \longrightarrow X / G$ with an iso $f(1) \cong p$ which maximizes $\nu(f)=\nu(p, \lambda)$, define $M(p)=\nu\left(f_{\text {max }}\right)$
2) if $p \leadsto q$ then $M(q) \leqslant M(p)$
3) up to conjugation, only finitely many λ appear as optimal destabilizors.

We will prove this in the case X affine (this implies it when \mathcal{L} is very ample too)
Idea uses spherical building $\operatorname{Sph}(G)$ constructed as follows (recall we are fixing norm |.1)

1) \forall maxi ℓ tori $T \subset G$, let S_{T} denote unitsphere in $\mathrm{Lie}(T)_{\mathbb{R}}$
2) Any Borel BOT gives a top dim'l cone in $L_{i e}(T)_{\mathbb{R}}$ (Weyl chamber) \leadsto gives polyhedral sector $\Delta_{B} \subset S_{T}$
3) Glue S_{T} to $S_{T^{\prime}}$ along Δ_{B} if $T^{\prime} \subset B$

Key properties:
Soph (G) is a union of A_{B} as B ranges over all Borels, intersecting along Δ_{p} where $B \subset P \supset B^{\prime}$. Dominant $\lambda_{i} G_{m} \rightarrow P$ up to conjugation and positive scaling gives point of Δ_{p}

The function $v(p, \lambda)=\frac{\left.w t_{\lambda} \mathcal{L}\right|_{\lim _{i \rightarrow \infty}} x(t) \cdot x}{|\lambda|}$ extends to a continuous function

$$
V: \operatorname{Deg}(p) \longrightarrow \mathbb{R}
$$

Kempf's theorem says Junique minimizer
Pf: 1) existence easy: can reduce to case of $G=t$, because any

$$
(p, \lambda) \sim\left(g p, g \lambda g^{-1}\right)^{\prime} \text { with } g \lambda g^{-1} \in T
$$

uniqueness: Can define $\operatorname{Deg}(p) \subset \operatorname{Sph}(G)$ to be the closed set of λ sit. $\lim _{t \rightarrow 0} \lambda(t)$ exists. For a homom. w/ Finite $t \rightarrow$ kernel $\mathrm{G}_{m}^{2} \rightarrow G$ and an equiv. map

$$
\mathbb{A}^{2} / \mathbb{G}_{m}^{2} \longrightarrow X / G \quad \text { mapping }(1,1) \mapsto x
$$

get a line segment in $\operatorname{Deg}(p)$

- torii diagram for A^{2}, all latins points correspond to $\lambda: G_{m} \rightarrow G$ under which $\lim _{\boldsymbol{x} \rightarrow 0} \lambda(t) \cdot p$ exists

Lem: Give two test data $(x, \lambda),\left(x, \lambda^{\prime}\right)$ can find equivalent test data for x sit, λ and λ^{\prime} commute

Pf: if P_{1}, P_{2} are two parabolics, then \exists $T \subset P_{1} \cap P_{2}$

Def: say $\delta, \delta \in \operatorname{Sph}(G)$ are antipodal if $\exists \lambda$ with $E=[\lambda]$ and $\Sigma^{\prime}=\left[\lambda^{-1}\right]$
em: Given $\sum, \delta_{\prime}^{\prime} \in \operatorname{Deg}(p) c \operatorname{Sph}(G)$, as affine ${ }_{\prime}^{\prime}$) long as they are not antipodal, \exists equivariant map

$\phi: \mathbb{C}_{m}^{2} \longrightarrow G$ finite kernel such that $\delta=[\phi(1, t)]$ and $\delta^{\prime}=[\phi(t, 1)]$

Proof of 2: uses fact that $Y_{\lambda} \hookrightarrow X$ is a closed immersion, so
$Y_{\lambda / P_{\lambda}} \longrightarrow X_{G}$ is proper and every point in the image is destabilized by a 1PS conjugate

Proof of 3:

